1D Motion

By Walter and Ian

A Quick Summary

- 1D Motion: Motion in one dimension (up, down, left, and right).
- Velocity and displacement (same as distance except can be used for forward and backward motions) equations are very commonly used in this type of motion
- Very easy to calculate if you know the formulas!

Tips and Tricks

- If your distance has a negative number, think of the object going backwards
- If you want to find the final velocity of an object and its initial velocity is 0 , just use $\mathrm{vf}=\mathrm{a}^{*} \mathrm{t}$ (normal equation is $\mathrm{vf}=\mathrm{vi}+\mathrm{a}^{*} \mathrm{t}$, but $\mathrm{vi}=0$ in this case).

Diagrams

One More Diagram

Acceleration/Time Graph

$v\left(\mathrm{~m} \cdot \mathrm{~s}^{-1}\right)$

$a\left(\mathrm{~m} \cdot \mathrm{~s}^{-2}\right)$

x (m)
$v\left(m \cdot s^{-1}\right)$

$a\left(\mathrm{~m} \cdot \mathrm{~s}^{-2}\right)$

Motion with constant acceleration
x (m)

$v\left(m \cdot s^{-1}\right)$

$a\left(\mathrm{~m} \cdot \mathrm{~s}^{-2}\right)$

FORMULAS

- The Variables
- $\quad \mathrm{D}=$ distance (meters [m])
- t = Time (seconds [sec])
- vi = Initial Velocity (m/sec)
- $\quad \mathrm{vf}=$ Final Velocity $(\mathrm{m} / \mathrm{sec})$
- $\quad v=$ Velocity ($\mathrm{m} / \mathrm{sec}$)
- $a=$ Acceleration (m/sec^2)
- Displacement Formulas
- $d=v i+.5 * a^{*} t^{\wedge} 2$
- $d=v^{*} t$
- $d=.5(v i+v f) t$
- $d=.5^{*} a^{*} t^{\wedge} 2$
- Velocity Formulas
- $v f=v i+a^{*} t$
- $\quad v=d / t$

2 Examples

1. A cute kitten, prancing at $5 \mathrm{~m} / \mathrm{s}$, accelerates at $1 \mathrm{~m} / \mathrm{s}^{\wedge} 2$ for 5 seconds. What is its final velocity after the 5 seconds?
a. Variables
i. $\quad V f=$?
ii. $\quad \mathrm{Vi}=5 \mathrm{~m} / \mathrm{s}$
iii. $t=5$ seconds
iv. $a=1 \mathrm{~m} / \mathrm{s}^{\wedge} 2$
b. $\quad v f=v i+a^{*} t$
i. $\quad v f=5+1 * 5$
ii. $\quad v f=10 \mathrm{~m} / \mathrm{s}$
2. In meters, what was its displacement (using the same initial velocity, final velocity, and time)?
a. Variables
i. $\quad \mathrm{Vi}=5 \mathrm{~m} / \mathrm{s}$
ii. $\quad V f=10 \mathrm{~m} / \mathrm{s}$
iii. $t=5 \mathrm{sec}$
b. $\quad d=.5(v i+v f) t$
i. $d=.5(5+10) 5$
ii. $\quad d=37.5 \mathrm{~m}$

3 Practice Problems

- A cute puppy, skipping at $10 \mathrm{~m} / \mathrm{s}$, accelerates at $3 \mathrm{~m} / \mathrm{s}^{\wedge} 2$ for 1 minute. What is its final velocity after the minute?
- In meters, what was its displacement?
- A reindeer is falling straight down a house 5 meters. What was its displacement?

