
Unit 7: Programming (Electronic Music)
Lesson 3: Programming in Arduino U07_L03_03-Teaching_Demo_Arduino
	

Copyright 2014-15, The Board of Regents of the University of Texas System. All Rights Reserved.
Requests to reproduce any part of this material may be made to UTeachEngineering. Page 1 of 11
	 	

To lead your students through this activity, you will need your computer, attached to a
projector, for projecting your code for students to see.

INSTALL THE SOFTWARE

Download and install the Arduino integrated development environment (IDE) (standard build),
available here:

• For Windows, MacOSX and Linux:
o Standard build: http://arduino.cc/en/main/software

STEP 1: PREPARE TO PROGRAM (see U07_L03_06-V1-Arduino1_Set_up_IDE.mp4)

1. Launch the IDE by clicking on the Arduino icon in the start menu.

	

2. Select the hardware. Click “Tools,” then “Board,” and be sure “Arduino Uno” is
selected.

Unit 7: Programming (Electronic Music)
Lesson 3: Programming in Arduino U07_L03_03-Teaching_Demo_Arduino
	

Copyright 2014-15, The Board of Regents of the University of Texas System. All Rights Reserved.
Requests to reproduce any part of this material may be made to UTeachEngineering. Page 2 of 11
	 	

3. Select the port. Next choose the correct communications (COM) port for the computer to
use. If you only have one thing plugged into your computer, then usually there is only
one COM port shown, and you can select it with the drop-down menu. Click “Tools,” and
“Serial Port.” Select the correct port (it will likely default to the correct port).

If you have multiple ports, you can unplug the microcontroller and see which ports go
away. Then plug it back in and see if the port comes back. This is the correct port.

4. Change the font size (optional). If it will help your students to see your generated code
more clearly, you may choose to increase the font size. To do this, click on “File,” then
“Preferences:”

Unit 7: Programming (Electronic Music)
Lesson 3: Programming in Arduino U07_L03_03-Teaching_Demo_Arduino
	

Copyright 2014-15, The Board of Regents of the University of Texas System. All Rights Reserved.
Requests to reproduce any part of this material may be made to UTeachEngineering. Page 3 of 11
	 	

You will see a popup box; enter a font size of 16 or 18 in the appropriate box (the default is
12).

Click “OK.”

Note that it is possible you may need to close and re-open the Arduino IDE in order for
this change to take effect.

5. Note where and how you will program. You will use written characters (letters,
numbers, and symbols) to create your code. Your code will be displayed in the white box.

6. Set up the IDE. You must type in the following commands in order for Arduino to
execute any program:

void setup()

{

}

void loop()
{
}

The program, or code, gets written
between these curly brackets.

No text between the parentheses, or
the code will not compile.

Unit 7: Programming (Electronic Music)
Lesson 3: Programming in Arduino U07_L03_03-Teaching_Demo_Arduino
	

Copyright 2014-15, The Board of Regents of the University of Texas System. All Rights Reserved.
Requests to reproduce any part of this material may be made to UTeachEngineering. Page 4 of 11
	 	

7. Test the system. Type the following information (code) between the curly brackets,
noting that the syntax is <function(arguments);> and that each line of code must end in
a semicolon):

tone(12,740);
Plays F# in the fifth octave (frequency obtained from U07_L03_04-
H1_Note_Frequencies) through the speaker connected at output pin 12 (see system
diagram for pin location)
delay(1000);
Plays that tone for 1000 ms (0.5 sec)
noTone(12);
Stops the tone after the specified time

8. Click on the right-arrow to test the system; verify that the speaker beeps.

Unit 7: Programming (Electronic Music)
Lesson 3: Programming in Arduino U07_L03_03-Teaching_Demo_Arduino
	

Copyright 2014-15, The Board of Regents of the University of Texas System. All Rights Reserved.
Requests to reproduce any part of this material may be made to UTeachEngineering. Page 5 of 11
	 	

STEP 2: PLAN YOUR PROGRAM (see U07_L03_07-V2-Arduino2_Comments.mp4)

You will create a program that plays music on your system - specifically, “Row, Row,
Row Your Boat” - to see how this all works. You will start with comments; this is good
coding practice.

1. Create a blank slate. If you have not already done so, use your mouse to highlight the
code you wrote for your first note, and press “delete” on your keyboard. This will delete
all the code you just wrote.

2. Insert comments. To insert a comment, simply type two forward slashes and then the text

you would like to enter.

You may want to enter your name, the title of the file, pseudocode (the plain-text version
of what you want to happen) and any comments or explanations you may have for other
users. (Anything you type in here will not be read as code by the computer and will not
be executed; the text entered here cannot mess up your program.)

STEP 3: PROGRAM THE FIRST NOTE. (see U07_L03_08-V3-Arduino3_Functions.mp4)

In Arduino, a command is called a “function.” Just as in mathematics, functions in
programming have inputs and outputs. Inputs tell the function what to output or what to
do.

1. To write the function for the first note, determine what note starts the song (it is middle
C, or C4, with a frequency of 262Hz) and its duration (in our example, this is 300
milliseconds). Program that note as follows:

becomes

Unit 7: Programming (Electronic Music)
Lesson 3: Programming in Arduino U07_L03_03-Teaching_Demo_Arduino
	

Copyright 2014-15, The Board of Regents of the University of Texas System. All Rights Reserved.
Requests to reproduce any part of this material may be made to UTeachEngineering. Page 6 of 11
	 	

tone(12,262); // tone(pin,frequency)
delay(300); // delay (duration)
noTone(12); // noTone(pin)

Note that the numbers in parentheses are the inputs. The comments after the “//” are
informative notes and are not required.

2. Test the programming by clicking on the right-arrow. You should hear a short C.
3. Save your program. Go to “File” and select “Save” or “Save As.” Save the program

with a relevant name in a logical location on your computer.

4. Program the second note. The second note is a C4 with the same duration as the first.
What is the most efficient way to enter this new information? (The video demonstrates
how to copy-and-paste code by highlighting the desired code, pressing CTRL-C, placing
the cursor where the text is to be pasted, and pressing CTRL-V.)

5. Program the third note. This note is also a C4, but with a duration of 200 ms.

6. Continue programming until all desired notes are present. You do not need to
program all notes, since you will soon (in step 4) use variables to create the whole song.

7. After you have coded the song, run the program and listen to be sure you have no

errors. You will hear that the first notes run together, so you might want to insert a
slight pause (delay) between repeated notes. Subtract the duration of the pause from
that of the note:

Unit 7: Programming (Electronic Music)
Lesson 3: Programming in Arduino U07_L03_03-Teaching_Demo_Arduino
	

Copyright 2014-15, The Board of Regents of the University of Texas System. All Rights Reserved.
Requests to reproduce any part of this material may be made to UTeachEngineering. Page 7 of 11
	 	

STEP 4: DEBUG (see U07_L03_09-V4-Arduino4_Debugging.mp4)

Test the code frequently to find errors. You can change tones and durations directly in the
function calls.

STEP 5A: ADD VARIABLES (see U07_L03_10-V5-Arduino5_Variables.mp4)

Variables will speed up the programming (and revising) process. Add variables to the
program that you created in Step 2.

1. Add a variable to identify the pin. Go to the beginning of your program and initialize a
new integer variable to identify the pin. Give the variable a name that makes sense to
you; in the video, the first variable is called “pin.”

int pin = 12; // the output pin, which is pin 12

2. Use that variable. Everywhere you had the number “12” entered to indicate the pin, you

can replace that “12” with “pin”. Now if you move the wire to a different pin, you only
need to change one value (that of the variable) and the pin number will be correct
everywhere. Furthermore, when entering future lines of code you won’t have to worry
about a typographical error such as entering “13” instead of “12”.

3. Add a second variable (with a different name) immediately below the first variable; in
the video, the second variable is called “C4” and the assigned value is 262 (Hz).

int C4 = 262; // frequency of C4

Unit 7: Programming (Electronic Music)
Lesson 3: Programming in Arduino U07_L03_03-Teaching_Demo_Arduino
	

Copyright 2014-15, The Board of Regents of the University of Texas System. All Rights Reserved.
Requests to reproduce any part of this material may be made to UTeachEngineering. Page 8 of 11
	 	

4. Add more variables.
int D4 = 294; // frequency of D4

int E4 = 330; // frequency of E4

int F4 = 349; // frequency of F4

int G4 = 392; // frequency of G4

int beat1 = 100; // duration of 100ms note

int beat2 = 200; // duration of 200ms note

int beat3 = 300; // duration of 300ms note

int beat6 = 600; // duration of 600ms note

5. Use the variables in your program. Wherever you had specified a frequency of 262, use
C4; wherever you had a frequency of 294, use D4; and so on. Also replace individual
durations with the appropriate variables (e.g., “beat1”, “beat 2”). (Note that this is not
done in the video, so the following screenshot is from the beginning of the next video.)

Play the program and make sure that everything is still correct. Save your program! (You
should be doing this periodically.)

STEP 5B: PROGRAM LINE 2 (see U07_L03_10-V5-Arduino5_Variables.mp4)

Program the second line of the song. Start by entering a new comment—in the video, the
comment is //gently down the stream—so that someone looking at your code will
know where the second line of the song begins. The code should look like:

You will need to replace this with
 delay(beat3-20);
so that the duration of this note
changes, like the others, when you
change the variables.

Unit 7: Programming (Electronic Music)
Lesson 3: Programming in Arduino U07_L03_03-Teaching_Demo_Arduino
	

Copyright 2014-15, The Board of Regents of the University of Texas System. All Rights Reserved.
Requests to reproduce any part of this material may be made to UTeachEngineering. Page 9 of 11
	 	

tone(pin,E4);
delay(beat2);
noTone(pin);

tone(pin,D4);
delay(beat1);
noTone(pin);

tone(pin,E4);
delay(beat2);
noTone(pin);

tone(pin,F4);
delay(beat1);
noTone(pin);

tone(pin,G4);
delay(beat6);
noTone(pin);

STEP 6: ADD OPERATORS (see U07_L03_11-V6-Arduino6_Mathematical_Operators.mp4)

1. To prepare for the need for operators, change all of your variables to half of their
current values. In other words, change the values so that

int beat1 = 50;
int beat2 = 100;
int beat3 = 150;
int beat6 = 300;

You will hear that the song plays very quickly. Now change all of the variables again so
that

int beat1 = 200;
int beat2 = 400;
int beat3 = 600;
int beat6 = 1200;

This makes the song too slow. You could keep changing all of these values until you find
the right tempo, or you could use operators to make the process quicker.

2. Use operators to make the value of best2, beat3, and beat6 depend on the value of beat1.
In particular, you will code:

int beat1 = 200;
int beat2 = beat1 * 2;
int beat3 = beat1 * 3;

int beat6 = beat1 * 6;

(In the video, “beat6” is dependent on “beat3” rather than “beat1”; either way is
correct.)

3. Save your program and play your song. If the variables and operators are correctly
related, your song should sound correct (although the tempo may still be too slow).

Unit 7: Programming (Electronic Music)
Lesson 3: Programming in Arduino U07_L03_03-Teaching_Demo_Arduino
	

Copyright 2014-15, The Board of Regents of the University of Texas System. All Rights Reserved.
Requests to reproduce any part of this material may be made to UTeachEngineering. Page 10 of 11
	

4. To see the power of operators, change the value of “beat1” to any duration you choose
(the video uses a value of 97). This will change the tempo of the entire song without you
needing to adjust any of the other time variables. Play the song at the new tempo.

5. Use variables and operators to code the rest of the song.

STEP 7: USE LOOPS FOR REPEATED PHRASES: (see U07_L03_12-V7-Arduino7_Loops)

This step of coding is more complex, and some students and teachers may choose not to
use this process (although we recommend it). Due to the complexity of the use of “for
loops,” a separate document is available for teacher reference (see U07_L03_05-
R2_For_Loops). To conduct the activity as in the video:

1. Identify the instructions (functions) to be repeated. Copy the first two lines of the
song (//row row row your boat) and (//gently down the stream) and paste the code
immediately below the end of those first two lines (before //merrily merrily merrily
merrily).

Play the song and verify that the first two lines repeat once.

2. Identify why this method may be inefective. What if the engineering team wanted the
code repeated ten times? The code would become long and messy.

3. Use "for loop" to repeat code more efficiently.

a. Begin by deleting what you just added to your first two lines, so that your code
only reflects the first two lines of the song.

b. Type this imediately before the beginning of the code that you want to repeat:
for (int i=0; i<2; i++) {

Unit 7: Programming (Electronic Music)
Lesson 3: Programming in Arduino U07_L03_03-Teaching_Demo_Arduino
	

Copyright 2014-15, The Board of Regents of the University of Texas System. All Rights Reserved.
Requests to reproduce any part of this material may be made to UTeachEngineering. Page 11 of 11
	

c. Highlight all the code you want to repeat (the entire first two lines of the song);
press "Tab" on your keyboard to indent it; and below the end of the code that will
repeat, insert the closing curly bracket: }

This tells the computer (the Arduino) that everything inside those curly brackets should
be repeated one time.

Simply stated, the code means this (plain text "translation"):

"For" a specified number of times beginning at zero for (int i=0;

If "i" is less than 2 i<2; (which it is, since 0<2)

Add "1" to "i" i++) ("i" now becomes "1")

Everything inside the curly brackets will be executed once and i will have a value of 1.

The “for loop" then takes us back to the top. Since i=1 is less than 2, 1 will be added to i
(so i is now 2) and the code inside the loop will repeat.

The “for loop" then takes us back to the top. Since i=2 is NOT less than 2, the code is not
repeated. Instead, the program continues to the code that follows the “for loop”.

4. Comment your loop function: // loop; index i; increment {}

5. Play your code (and save it, if it is correct).

6. Change the condition so the code repeats five times. This means you will need to
change i<2; to i<5;

7. Play the new code to verify it works correctly.

8. If your song allows for repetition, continue coding your song using loops.

