Christopher Morgan

Redmond

Physics

8 December 2015

Free Body Diagram (FBD) One Pager

A Free Body Diagram (FBD) is a tool used to sole problems with multiple forces acting on a single body.

Tips when using the Free Body Diagram

- 1. Identify the force acting on a body
- 2. Identify the direction of each acting force and draw vectors representing the forces
- 3. Create a pair of equations from a free body
- 4. Do the math. This usually involves systems of equations

Pictures

<u>Formulas</u>

Equation	Name	Direction	Notes
$F_g = mg$	Gravity; weight	Downwards	$g = 9.8 \text{ m/s}^2$ on the Earth
		(towards center of	
		the Earth).	
$ F_N $	Normal force	Perpendicular (i.e.	Equal to whatever force is needed to
		normal) to the	prevent the object from falling
		surface.	through the floor.
			Use the FBD recipe to find F_N .
$ F_T $	Tension	In direction of the	Is either given already, or needs to be
		rope or string (away	found via the FBD recipe.
E - L.	Coming Comes	from the object).	
$F_s = kx$	Spring force	Opposite to the direction of x	x is indicates how much the spring is
	(Hooke's law)	direction of x	compressed or stretched, and $x = 0$ if it's not stretched or compressed at
			all. k is called the spring constant.
C E	Kinetic friction	Opposite to the	μ_k is the coefficient of kinetic friction
$f_k = \mu_k F_N$	Kinetic iriction	direction of the	and F_N the normal force.
		velocity	and T N the normal force.
f_s	Static friction	Parallel to the	Equal to whatever force is needed to
Js		surface, but the	prevent object from moving.
		exact direction	However, the max value of f_s is:
		depends on what is	
		needed to prevent	$f_{s,\max} = \mu_s F_N$
		object from moving.	with μ_s the coefficient of static
		7	<u>friction</u> and F_N the normal force.
$F_G = G \frac{m_1 m_2}{r^2}$	Gravitational	From center of one	Use this equation instead of $F_g = mg$
	force	mass towards the	when the r is approximately the
		center of the other	radius of the Earth or larger (i.e. for
F 77	Duaranar for	Linuarda	planets and such).
$F_{\scriptscriptstyle B} = \rho_{\scriptscriptstyle f} V_{\scriptscriptstyle S} g$	Buoyancy force	Upwards	ρ_r is the density of the fluid, and V_s
			the part of the volume of the object
			that is submerged.
			When an object of mass m is
			floating, $F_B = \rho_f V_s g = mg$.

Example

Practice Problems

- 1. A book is at rest on a tabletop. Diagram the forces acting on the book.
- 2. A girl is suspended motionless from the ceiling by two ropes. Diagram the forces acting on the combination of girl and bar.
- 3. An egg is free-falling from a nest in a tree. Neglect air resistance. Diagram the forces acting on the egg as it is falling.
- 4. A flying squirrel is gliding (no wing flaps) from a tree to the ground at constant velocity. Consider air resistance. Diagram the forces acting on the squirrel.
- 5. A rightward force is applied to a book in order to move it across a desk with a rightward acceleration. Consider frictional forces. Neglect air resistance. Diagram the forces acting on the book.