Christopher Morgan
Redmond
Physics
8 December 2015

## Free Body Diagram (FBD) One Pager

A Free Body Diagram (FBD) is a tool used to sole problems with multiple forces acting on a single body.

Tips when using the Free Body Diagram

1. Identify the force acting on a body
2. Identify the direction of each acting force and draw vectors representing the forces
3. Create a pair of equations from a free body
4. Do the math. This usually involves systems of equations

## Pictures



Formulas

| Equation | Name | Direction | Notes |
| :---: | :---: | :---: | :---: |
| $F_{g}=m g$ | Gravity; weight | Downwards (towards center of the Earth). | $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ on the Earth |
| $F_{N}$ | Normal force | Perpendicular (i.e. normal) to the surface. | Equal to whatever force is needed to prevent the object from falling through the floor. Use the FBD recipe to find $F_{N}$. |
| $F_{T}$ | Tension | In direction of the rope or string (away from the object). | Is either given already, or needs to be found via the FBD recipe. |
| $F_{s}=k x$ | Spring force (Hooke's law) | Opposite to the direction of $x$ | $x$ is indicates how much the spring is compressed or stretched, and $x=0$ if it's not stretched or compressed at all. $k$ is called the spring constant. |
| $f_{k}=\mu_{k} F_{N}$ | Kinetic friction | Opposite to the direction of the velocity | $\mu_{k}$ is the coefficient of kinetic friction and $F_{N}$ the normal force. |
| $f_{s}$ | Static friction | Parallel to the surface, but the exact direction depends on what is needed to prevent object from moving. | Equal to whatever force is needed to prevent object from moving. <br> However, the max value of $f_{s}$ is: $f_{s, \max }=\mu_{s} F_{N}$ <br> with $\mu_{s}$ the coefficient of static friction and $F_{N}$ the normal force. |
| $F_{G}=G \frac{m_{1} m_{2}}{r^{2}}$ | Gravitational force | From center of one mass towards the center of the other | Use this equation instead of $F_{g}=m g$ when the $r$ is approximately the radius of the Earth or larger (i.e. for planets and such). |
| $F_{B}=\rho_{f} V_{s} g$ | Buoyancy force | Upwards | $\rho_{f}$ is the density of the fluid, and $V_{s}$ the part of the volume of the object that is submerged. <br> When an object of mass $m$ is floating, $F_{B}=\rho_{f} V_{s} g=m g$. |

## Example



## Practice Problems

1. A book is at rest on a tabletop. Diagram the forces acting on the book.
2. A girl is suspended motionless from the ceiling by two ropes. Diagram the forces acting on the combination of girl and bar.
3. An egg is free-falling from a nest in a tree. Neglect air resistance. Diagram the forces acting on the egg as it is falling.
4. A flying squirrel is gliding (no wing flaps) from a tree to the ground at constant velocity. Consider air resistance. Diagram the forces acting on the squirrel.
5. A rightward force is applied to a book in order to move it across a desk with a rightward acceleration. Consider frictional forces. Neglect air resistance. Diagram the forces acting on the book.
