Averi Polasek \& Nicholas Barrera

gPE
This energy is usually used in finding potential energy it is pretty self-explanatory.
$\mathrm{gPE}=\mathrm{m} \times \mathrm{g} \times \mathrm{h}$
$\mathrm{g}=$ gravity $\quad \mathrm{m}=$ mass $\quad \mathrm{h}=$ height
$\mathrm{PE}=$ potential energy - energy that hasn't happened yet
$\mathrm{m}=$ measured in $\mathrm{kg} \quad \mathrm{g}=9.8 \mathrm{~m} / \mathrm{s} \quad \mathrm{h}=$ measured in meters
$\mathrm{gPE}=\mathrm{Nm}=\mathrm{J}$

Example:

A 57 kg object is on top of a building, which is 30 m tall, what is the gPE?

$$
\mathrm{m}=57 \mathrm{~kg} \quad \mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s} \quad \mathrm{~h}=30 \mathrm{~m}
$$

$$
\mathrm{gPE}=57 \mathrm{~kg} \times 9.8 \times 30 \mathrm{~m}
$$

$\mathrm{gPE}=16758 \mathrm{~J}$
Example 2: What would the gPE be for someone that has a mass of 100 kg and was standing on top of Temple College (20 meters)? $100 \times 9.8 \times 20=19600$

Ex 3: If a man standing on top of the empire state building (381 meters) had a gPE of 280,035 joules what is his mass?
? $\times 9.8 \times 381=280,035$
Tip: The number that you will use for gravity will always be 9.8 unless told otherwise for these types of equations.

Averi Polasek \& Nicholas Barrera

ePE

Elastic Potential Energy is energy that is stored. This is usually used when working with springs.
$e P E=1 / 2 \mathrm{kx} \mathrm{d}^{2}$
$e=$ elastic $\quad k=$ spring constant $\quad d=$ distance stretched/compressed
$\mathrm{PE}=$ potential energy - energy that hasn't happened yet
ePE $=\mathrm{Nm}=\mathrm{J}$

Example:

$$
\begin{aligned}
& \mathrm{m}=500 \mathrm{~g} \quad \mathrm{~d}=.42 \mathrm{~m} \quad \mathrm{a}=9.8 \mathrm{~m} / \mathrm{s} \\
& \mathrm{~F}=\mathrm{m} \times \mathrm{a} \rightarrow \quad \mathrm{~F}=.500 \mathrm{~kg} \times 9.8 \rightarrow \mathrm{~F}=4.9 \mathrm{~N} \\
& \mathrm{k}=\mathrm{F} / \mathrm{d} \rightarrow \mathrm{k}=4.9 \mathrm{~N} / .42 \mathrm{~m} \rightarrow \mathrm{k}=11.66 \mathrm{Nm}
\end{aligned}
$$

- (the spring constant is only constant to that spring because each spring is different)
ePE $=1 / 211.66 \mathrm{x} .42^{2} \rightarrow 1.02 \mathrm{~J}$
Tips: $\mathrm{K}=$ springs constant but the constant isn't always constant it changes most of the time it is only constant for a spring of that size

The units used in these problems are Joules.
The constant will always change!

Averi Polasek \& Nicholas Barrera

