SIMPLE HARMONIC MOTION

SHM is the motion that occurs when the restoring force acting on an object is proportional to the object's displacement from its equilibrium or rest position.

The period T of a mass-spring system undergoing simple harmonic motion is the time needed for one complete cycle.

$$
T=2 \pi \sqrt{\frac{m}{k}}
$$

Units: s

where k is the spring's constant

GRAPH OF SHM

The graph shown below depicts the up and down oscillation of the mass at the end of a spring. One complete cycle is from a to b, or from c to d. The time taken for one cycle is T, the period.

7.1 For the motion shown in the figure, find:
a. Amplitude
b. Period
c. Frequency

a. Amplitude: maximum displacement from equilibrium

$$
A=+-0.75 \mathrm{~cm}
$$

b. $T=$ time for one complete cycle

$$
T=0.2 \mathrm{~s}
$$

c. $f=1 / T=1 / 0.2=5 \mathrm{~Hz}$
b. What is the period of the oscillation?

$$
\begin{gathered}
m=0.1 \mathrm{~kg}, \\
k=50 \mathrm{~N} / \mathrm{m}
\end{gathered} \quad T=2 \pi \sqrt{\frac{m}{k}}=2 \pi \sqrt{\frac{0.1}{50}}=0.28 \mathrm{~s}
$$

c. What is the frequency?

$$
f=\frac{1}{T}=\frac{1}{0.28}=3.57 \mathrm{~Hz}
$$

7.2 A pearl is placed on a spring scale whose spring constant is $362 \mathrm{~N} / \mathrm{m}$. If the scale' s platform oscillates with a frequency of 1.20 Hz , what is the mass of the pearl?

$$
\begin{array}{rlrl}
k=362 \mathrm{~N} / \mathrm{m} & & T & =1 / \mathrm{f} \\
f=1.2 \mathrm{~Hz} & & =1 / 1.2 \\
& & =0.83 \mathrm{~s}
\end{array}
$$

$$
T=2 \pi \sqrt{\frac{m}{k}}
$$

$$
T^{2}=\frac{4 \pi^{2} m}{k} \quad T^{2} k=4 \pi^{2} m
$$

$$
m=\frac{T^{2} k}{4 \pi^{2}}=\frac{(0.83)^{2}(362)}{4 \pi^{2}}=6.3 \mathrm{~kg}
$$

THE SIMPLE PENDULUM

A simple pendulum has its entire mass concentrated at the end of a string. It undergoes SHM provided that the arc through which it travels is only a few degrees. The period of a simple pendulum of length L is given by:

$$
T=2 \pi \sqrt{\frac{L}{g}} \quad \text { Units: s }
$$

where g is the acceleration due to gravity
7.3 Find the frequency of a simple pendulum 20 cm long.
$L=0.2 \mathrm{~m}$

$$
\begin{gathered}
T=2 \pi \sqrt{\frac{L}{g}}=2 \pi \sqrt{\frac{0.2}{10}}=0.89 \mathrm{~s} \\
f=\frac{1}{T}=\frac{1}{0.89}=1.1 \mathrm{~Hz}
\end{gathered}
$$

7.4 A pendulum 1 m long oscillates 30 times per minute in a certain location. What is the value of g there?

$$
\begin{aligned}
& \begin{array}{l}
L=1 \mathrm{~m} \\
f=30 \mathrm{rpm}
\end{array}\left(\frac{30 \mathrm{rev}}{\mathrm{~min}}\right)\left(\frac{1 \mathrm{~min}}{60 \mathrm{sec}}\right)=0.5 \mathrm{~Hz} \\
& T=\frac{1}{f}=\frac{1}{0.5}=\mathbf{2 ~ s} \quad T=2 \pi \sqrt{\frac{L}{g}} \\
& g=\frac{4 \pi^{2} L}{T^{2}}=\frac{4 \pi^{2}(1)}{2^{2}}=9.86 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

